3.34 \(\int \frac {a+b \cosh ^{-1}(c x)}{x^2 (d-c^2 d x^2)} \, dx\)

Optimal. Leaf size=95 \[ -\frac {a+b \cosh ^{-1}(c x)}{d x}+\frac {2 c \tanh ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{d}+\frac {b c \text {Li}_2\left (-e^{\cosh ^{-1}(c x)}\right )}{d}-\frac {b c \text {Li}_2\left (e^{\cosh ^{-1}(c x)}\right )}{d}+\frac {b c \tan ^{-1}\left (\sqrt {c x-1} \sqrt {c x+1}\right )}{d} \]

[Out]

(-a-b*arccosh(c*x))/d/x+b*c*arctan((c*x-1)^(1/2)*(c*x+1)^(1/2))/d+2*c*(a+b*arccosh(c*x))*arctanh(c*x+(c*x-1)^(
1/2)*(c*x+1)^(1/2))/d+b*c*polylog(2,-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/d-b*c*polylog(2,c*x+(c*x-1)^(1/2)*(c*x+1
)^(1/2))/d

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {5746, 92, 205, 5694, 4182, 2279, 2391} \[ \frac {b c \text {PolyLog}\left (2,-e^{\cosh ^{-1}(c x)}\right )}{d}-\frac {b c \text {PolyLog}\left (2,e^{\cosh ^{-1}(c x)}\right )}{d}-\frac {a+b \cosh ^{-1}(c x)}{d x}+\frac {2 c \tanh ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{d}+\frac {b c \tan ^{-1}\left (\sqrt {c x-1} \sqrt {c x+1}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c*x])/(x^2*(d - c^2*d*x^2)),x]

[Out]

-((a + b*ArcCosh[c*x])/(d*x)) + (b*c*ArcTan[Sqrt[-1 + c*x]*Sqrt[1 + c*x]])/d + (2*c*(a + b*ArcCosh[c*x])*ArcTa
nh[E^ArcCosh[c*x]])/d + (b*c*PolyLog[2, -E^ArcCosh[c*x]])/d - (b*c*PolyLog[2, E^ArcCosh[c*x]])/d

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 5694

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> -Dist[(c*d)^(-1), Subst[Int[
(a + b*x)^n*Csch[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 5746

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
((f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(d*f*(m + 1)), x] + (Dist[(b*c*n*(-d)^p)/(f*(m + 1)
), Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] + Dist[(c^2
*(m + 2*p + 3))/(f^2*(m + 1)), Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x], x]) /; FreeQ[{a, b,
 c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[m, -1] && IntegerQ[m] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {a+b \cosh ^{-1}(c x)}{x^2 \left (d-c^2 d x^2\right )} \, dx &=-\frac {a+b \cosh ^{-1}(c x)}{d x}+c^2 \int \frac {a+b \cosh ^{-1}(c x)}{d-c^2 d x^2} \, dx+\frac {(b c) \int \frac {1}{x \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{d}\\ &=-\frac {a+b \cosh ^{-1}(c x)}{d x}-\frac {c \operatorname {Subst}\left (\int (a+b x) \text {csch}(x) \, dx,x,\cosh ^{-1}(c x)\right )}{d}+\frac {\left (b c^2\right ) \operatorname {Subst}\left (\int \frac {1}{c+c x^2} \, dx,x,\sqrt {-1+c x} \sqrt {1+c x}\right )}{d}\\ &=-\frac {a+b \cosh ^{-1}(c x)}{d x}+\frac {b c \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{d}+\frac {2 c \left (a+b \cosh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{d}+\frac {(b c) \operatorname {Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{d}-\frac {(b c) \operatorname {Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{d}\\ &=-\frac {a+b \cosh ^{-1}(c x)}{d x}+\frac {b c \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{d}+\frac {2 c \left (a+b \cosh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{d}+\frac {(b c) \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{d}-\frac {(b c) \operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{d}\\ &=-\frac {a+b \cosh ^{-1}(c x)}{d x}+\frac {b c \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{d}+\frac {2 c \left (a+b \cosh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{d}+\frac {b c \text {Li}_2\left (-e^{\cosh ^{-1}(c x)}\right )}{d}-\frac {b c \text {Li}_2\left (e^{\cosh ^{-1}(c x)}\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 132, normalized size = 1.39 \[ \frac {-\frac {a+b \cosh ^{-1}(c x)}{x}-c \log \left (1-e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )+c \log \left (e^{\cosh ^{-1}(c x)}+1\right ) \left (a+b \cosh ^{-1}(c x)\right )+\frac {b c \sqrt {c^2 x^2-1} \tan ^{-1}\left (\sqrt {c^2 x^2-1}\right )}{\sqrt {c x-1} \sqrt {c x+1}}+b c \text {Li}_2\left (-e^{\cosh ^{-1}(c x)}\right )-b c \text {Li}_2\left (e^{\cosh ^{-1}(c x)}\right )}{d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c*x])/(x^2*(d - c^2*d*x^2)),x]

[Out]

(-((a + b*ArcCosh[c*x])/x) + (b*c*Sqrt[-1 + c^2*x^2]*ArcTan[Sqrt[-1 + c^2*x^2]])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]
) - c*(a + b*ArcCosh[c*x])*Log[1 - E^ArcCosh[c*x]] + c*(a + b*ArcCosh[c*x])*Log[1 + E^ArcCosh[c*x]] + b*c*Poly
Log[2, -E^ArcCosh[c*x]] - b*c*PolyLog[2, E^ArcCosh[c*x]])/d

________________________________________________________________________________________

fricas [F]  time = 0.41, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {b \operatorname {arcosh}\left (c x\right ) + a}{c^{2} d x^{4} - d x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/x^2/(-c^2*d*x^2+d),x, algorithm="fricas")

[Out]

integral(-(b*arccosh(c*x) + a)/(c^2*d*x^4 - d*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {b \operatorname {arcosh}\left (c x\right ) + a}{{\left (c^{2} d x^{2} - d\right )} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/x^2/(-c^2*d*x^2+d),x, algorithm="giac")

[Out]

integrate(-(b*arccosh(c*x) + a)/((c^2*d*x^2 - d)*x^2), x)

________________________________________________________________________________________

maple [A]  time = 0.27, size = 161, normalized size = 1.69 \[ -\frac {a}{d x}-\frac {c a \ln \left (c x -1\right )}{2 d}+\frac {c a \ln \left (c x +1\right )}{2 d}-\frac {b \,\mathrm {arccosh}\left (c x \right )}{d x}+\frac {2 c b \arctan \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d}+\frac {c b \dilog \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d}+\frac {c b \dilog \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d}+\frac {c b \,\mathrm {arccosh}\left (c x \right ) \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(c*x))/x^2/(-c^2*d*x^2+d),x)

[Out]

-a/d/x-1/2*c*a/d*ln(c*x-1)+1/2*c*a/d*ln(c*x+1)-b/d*arccosh(c*x)/x+2*c*b/d*arctan(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/
2))+c*b/d*dilog(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))+c*b/d*dilog(1+c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))+c*b/d*arccosh(
c*x)*ln(1+c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{8} \, {\left (24 \, c^{3} \int \frac {x \log \left (c x - 1\right )}{4 \, {\left (c^{2} d x^{2} - d\right )}}\,{d x} - 4 \, c^{2} {\left (\frac {\log \left (c x + 1\right )}{c d} - \frac {\log \left (c x - 1\right )}{c d}\right )} - 8 \, c^{2} \int \frac {\log \left (c x - 1\right )}{4 \, {\left (c^{2} d x^{2} - d\right )}}\,{d x} - \frac {c x \log \left (c x + 1\right )^{2} + 2 \, c x \log \left (c x + 1\right ) \log \left (c x - 1\right ) - 4 \, {\left (c x \log \left (c x + 1\right ) - c x \log \left (c x - 1\right ) - 2\right )} \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{d x} + 8 \, \int \frac {c^{2} x \log \left (c x + 1\right ) - c^{2} x \log \left (c x - 1\right ) - 2 \, c}{2 \, {\left (c^{3} d x^{4} - c d x^{2} + {\left (c^{2} d x^{3} - d x\right )} \sqrt {c x + 1} \sqrt {c x - 1}\right )}}\,{d x}\right )} b + \frac {1}{2} \, a {\left (\frac {c \log \left (c x + 1\right )}{d} - \frac {c \log \left (c x - 1\right )}{d} - \frac {2}{d x}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/x^2/(-c^2*d*x^2+d),x, algorithm="maxima")

[Out]

1/8*(24*c^3*integrate(1/4*x*log(c*x - 1)/(c^2*d*x^2 - d), x) - 4*c^2*(log(c*x + 1)/(c*d) - log(c*x - 1)/(c*d))
 - 8*c^2*integrate(1/4*log(c*x - 1)/(c^2*d*x^2 - d), x) - (c*x*log(c*x + 1)^2 + 2*c*x*log(c*x + 1)*log(c*x - 1
) - 4*(c*x*log(c*x + 1) - c*x*log(c*x - 1) - 2)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1)))/(d*x) + 8*integrate(1/
2*(c^2*x*log(c*x + 1) - c^2*x*log(c*x - 1) - 2*c)/(c^3*d*x^4 - c*d*x^2 + (c^2*d*x^3 - d*x)*sqrt(c*x + 1)*sqrt(
c*x - 1)), x))*b + 1/2*a*(c*log(c*x + 1)/d - c*log(c*x - 1)/d - 2/(d*x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {a+b\,\mathrm {acosh}\left (c\,x\right )}{x^2\,\left (d-c^2\,d\,x^2\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(c*x))/(x^2*(d - c^2*d*x^2)),x)

[Out]

int((a + b*acosh(c*x))/(x^2*(d - c^2*d*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \frac {\int \frac {a}{c^{2} x^{4} - x^{2}}\, dx + \int \frac {b \operatorname {acosh}{\left (c x \right )}}{c^{2} x^{4} - x^{2}}\, dx}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(c*x))/x**2/(-c**2*d*x**2+d),x)

[Out]

-(Integral(a/(c**2*x**4 - x**2), x) + Integral(b*acosh(c*x)/(c**2*x**4 - x**2), x))/d

________________________________________________________________________________________